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Estimating Ethnic Admixture from Pedigree Data

Janet S. Sinsheimer,1,2,3,* Christopher L. Plaisier,1 Adriana Huertas-Vazquez,1 Carlos Aguilar-Salinas,4

Teresa Tusie-Luna,5 Päivi Pajukanta,1 and Kenneth Lange1,2

This paper introduces a likelihood method of estimating ethnic admixture that uses individuals, pedigrees, or a combination of individ-

uals and pedigrees. For each founder of a pedigree, admixture proportions are calculated by conditioning on the pedigree-wide genotypes

at all ancestry-informative markers. These estimates are then propagated down the pedigree to the nonfounders by a simple averaging

process. The large-sample standard errors of the founders’ proportions can be similarly transformed into standard errors for the admix-

ture proportions of the descendants. These standard errors are smaller than the corresponding standard errors when each individual is

treated independently. Both hard and soft information on a founder’s ancestry can be accommodated in this scheme, which has been

implemented in the genetic software package Mendel. The utility of the method is demonstrated on simulated data and a real data

example involving Mexican families of mixed Amerindian and Spanish ancestry.
Determining the ethnic admixture of individuals with ge-

notype data has become very popular. Estimated admix-

ture proportions are helpful in understanding population

histories,1 satisfying people’s curiosity about their family

origins,2,3 and adjusting for ethnic admixture in genetic

association studies.4

When family data are available, an allelic association

with a disease can be detected in several ways.5 For exam-

ple, if the phenotype is quantitative, then the measured ge-

notype approach treats allelic contributions as fixed effects

and environmental and polygenic background as random

effects. Although this approach is powerful, it can lead to

false associations when population substructure is present

but ignored. Family-based methods such as the transmis-

sion disequilibrium test (TDT),6 the gamete competition

model,7,8 and family-based association test FBAT9,10 are

specifically designed to guard against false inferences in

studies with ethnically diverse subjects drawn from ances-

tral populations differing widely in genetic background

and disease risk.10 The price paid by these safeguarded

methods is loss of power. As an alternative approach, cova-

riate adjustment of measured genotypes for ethnic ad-

mixture can reduce the chance of false inference while

maintaining good power.

In this report, we describe a likelihood method that uses

ancestry-informative marker (AIM) genotypes from all

available family members to estimate the ethnic admixture

proportions of the founders. These estimates are then

propagated to the nonfounders by a simple averaging

process. The standard errors of the founder estimates can

likewise be propagated to the nonfounders. For admixture

estimation to have a decent chance of success, markers

should be chosen with allele frequencies that clearly sepa-

rate the ancestral populations.

Our ethnic-admixture-estimation method applies to

both pedigrees and unrelated individuals. It estimates an
individual’s ancestry from K ancestral populations by

conditioning on the observed genotypes throughout his

or her pedigree. So that excessive computation times

with family data can be avoided, it is limited to unlinked

markers. For random individuals, this assumption can be

relaxed to markers in linkage equilibrium. The method re-

quires accurate specification of the ancestral populations,

good estimates of AIM allele frequencies, and AIMs that in-

dividually discriminate between at least two of the putative

ancestral populations.11 For the inference of ancestry, typ-

ing of one or more unlinked highly polymorphic markers

per chromosome is ideal; fewer markers can be used at

the expense of precision. Microsatellites, indels, or SNPs

are all valid genotyping targets. Microsatellite markers are

not necessarily better suited to the method than SNPs be-

cause the method can treat closely spaced SNPs as super-

markers when the recombinations are small.8,12 Because

modern likelihood calculations are designed to handle

markers with dominant and recessive alleles, there is no

need prior to analysis for individuals to be haplotyped at

a SNP-combination marker.

Assuming the pedigrees are independent, the likelihood

method proceeds pedigree by pedigree. Random individ-

uals count as degenerate pedigrees in this process. In the

first stage of estimation for a pedigree, the likelihood of

all marker phenotypes scattered across the pedigree is max-

imized with respect to the ancestral admixture proportions

of the founders. Although the likelihood depends on the

population allele frequencies at each marker in each an-

cestral population, these frequencies are not parameters.

For a pedigree with n people labeled 1,., n, let Xi and Gi,

respectively, denote the multilocus phenotype and geno-

type of individual i at all S markers. Because some geno-

types may be unknown, the likelihood must sum over all

possible values of Gi. Starting from Ott’s representation,13

the likelihood L of the pedigree is
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Here, Xis and Gis denote the phenotype and genotype of

individual i at marker s. The product rule for likelihoods is

in effect because the markers are unlinked. The penetrance

function Pen is ordinarily 0 or 1, but it could in principle be

more complicated and capture genotyping error. Careful

structuring of the Pen function permits the use of nonco-

dominant markers such as SNP-combination markers.

The function Tran supplies the usual probability for ge-

netic transmission from parents [ and m to their offspring

c. In view of our simplifying assumption, Tran incorporates

Mendel’s laws but no recombination effects.14 A founder j’s

probability of belonging to each of the K ancestral popula-

tions is determined by the Prior function, which is param-

eterized by j’s admixture proportions. If j is known to have

a specific ancestry, then the corresponding admixture

proportions are fixed rather than estimated.

The form of the Prior function is unusual and deserves

more explanation. Let pjk be the proportion of founder j’s

ancestry attributable to population k. The pjk are nonnega-

tive and satisfy the constraint
PK

k¼1 pjk ¼ 1. In our simple

model, nature chooses a genotype for j at marker s by se-

lecting two random alleles from an infinite pool of possible

alleles. Allele a with frequency fka in ancestral population

k is drawn with probability qa ¼
PK

k¼1 pjkfka from the pool.

A genotype a/b for j has the Hardy-Weinberg frequency

Prior
�
Gjs ¼ a=b

�
¼ q2

a a ¼ b
2qaqb a s b:

�
(2)

When all the AIMs are codominant and founders are

completely genotyped, offspring genotypes are irrelevant

in the determination of ancestry. However, if the founders

are not genotyped or incompletely genotyped or if the

markers are noncodominant, then the admixture esti-

mates are improved when offspring genotypes are taken

into account. Details of the maximum-likelihood estima-

tion and the incorporation of prior ancestry information

are given in Appendix A.

Once the founders’ admixture proportions have been es-

timated, the nonfounders’ admixture proportions can be

calculated. Let wcj be the proportion of individual c’s genes

that derive from founder j. For consistency, we put wjj ¼ 1

and wjh¼ 0 for another founder h s j. The matrix W¼ (wcj)

is computed recursively starting with these boundary

values. If a child c has parents [ and m, then we compute

wcj as the average

wcj ¼
1

2

�
w[j þ wmj

�
,

provided w[j and wmj are already known. If we number par-

ents before children, then we can compute all of W in a sin-

gle sweep starting with the founder values in the upper

left-hand corner of W. It is no accident that this looks sus-

piciously like the classical algorithm for the computation

of kinship coefficients. In fact, wcj is twice the kinship co-

efficient between c and founder j. Given the wcj, it makes

sense to compute the proportion pck of c’s ancestry due to

population k as the weighted average

pck ¼
X

j

wcjpjk: (3)

Again, the pck are nonnegative and satisfy the constraintPK
k¼1 pck ¼ 1. To estimate pck, we simply substitute the esti-

mate bpjk of pjk in Equation 3 for each founder j. This can

produce results that are slightly odd on first sight. For in-

stance, although two siblings might have inherited differ-

ent genes from their parents, their estimated admixture

proportions are always exactly the same. This apparent

anomaly is not worrisome because their ancestral propor-

tions across the entire genome should be identical.

Standard errors for the founders’ admixture proportions

are computed from the observed information matrix. In

view of Equation 3, we have

Var
�bpck

�
¼
X

j

w2
cjVarðbpjkÞ þ 2

X
j

X
h<j

wcjwchCovðbpjk,bphkÞ (4)

for any nonfounder c, where h and j range over all

founders. Because 0 % wcj % 1/2 for all c and j when there

is no inbreeding and Covðbpjk,bphkÞ is often nearly zero, the

variances of an offspring’s estimates are very often less

than the weighted average of variances of the founder’s

estimates.

To demonstrate the utility of the method, we apply it to

a real data example involving Mexican families of mixed

Amerindian and Spanish ancestry. We then turn to a care-

fully designed simulation study to test the properties of the

method. Readers interested the nuts and bolts of running

Mendel on their own data can refer to the Mendel docu-

mentation.12

We now consider the admixture problem for six multi-

generation Mexican families from Mexico City. These fam-

ilies were recruited by the Lipid Clinic of the Instituto Na-

cional de Ciencias Medicas y Nutricion Salvador Zubiran

(INCMNSZ) as part of a study on the genetics of familial

combined hyperlipidemia (FCHL). Each subject provided

written informed consent as part of the original study,

and approval was obtained by the Institutional Committee

of Biomedical Research in Humans of the INCMNSZ.15 By

using the pedigree-trimming option of Mendel,16 we ex-

cluded ungenotyped family members who are unnecessary

in determining the relationships among genotyped mem-

bers. The trimmed pedigrees each contain from 15 to 23
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members and from three to six sibships, for a total of 27 sib-

ships in the entire dataset. Only three of the 76 offspring

have no genotypes. In contrast, many of the founders are

completely untyped. In family 5, none of the six founders

is available for typing. At the other extreme, all seven

founders of families 1 and 2 are at least partially geno-

typed. We checked for genotyping errors by using the mis-

typing option of Mendel17 and removed inconsistent

genotypes.

All family members are Mestizos whose ancestry is pre-

dominantly a mixture of Spanish and Amerindian. The

proportion of African ancestry is negligible in the families

used in this study.15 The low likelihood of African ancestry

is consistent with previous studies of Mestizos from Mex-

ico City, where the estimated proportion of European

ancestry is between 34.8% and 70.8%, the proportion of

Amerindian ancestry is between 27.6% and 56.2%, and

the proportion of African ancestry is between 0.9% and

6.2%. These previous studies are summarized by Bonilla

and coworkers.18 Thus, we limited the ancestral popula-

tions to Spanish and Amerindian.

Bonilla and coworkers assembled an AIM panel to esti-

mate ethnic admixture in Hispanics.18–21 The ancestral

populations with published allele frequencies at these

markers include Spaniards, Mayans, Nahuas, and South-

western Native Americans (Cheyenne, Pima, and Pueblo).

All individuals with evidence of admixture were excluded

from the calculation of the allele frequencies for the ances-

tral populations.19 Allele frequencies and other informa-

tion on the AIMs are available in dbSNP, submitter id

PSU_ANTH.

For our purposes, we selected nine unlinked AIMs that

show greater than 30% absolute difference between Span-

ish and Amerindian allele frequencies and have no direct

or indirect connection with FCHL susceptibility. Because

the specific Amerindian origin varies among Mestizos, we

used the average of the Mayan, Nahua, and Southwestern

Native American frequencies in this study. For almost all of

the markers, the allele frequencies differ by less than 10%

among the three Amerindian reference groups. As a check

on our assumption of regional homogeneity, we estimated

ethnic admixture using each of the three Amerindian refer-

ence group frequencies (Mayan, Nahua, and Southwestern

Native Americans) and found essentially no differences in

our conclusions (data not shown).

If we want to include a Dirichlet prior for each ancestor,

then we must convey the prior counts to Mendel. For ex-

ample, if we suspect that each of these families has slightly

more Spanish than Amerindian ancestry, then in a ratio

0:56:0.44, we specify 2.24 counts favoring Spanish ances-

try and 1.76 prior counts favoring Amerindian ancestry.

The choice of 4 for the sum was selected empirically so

that the prior would have a moderately strong effect on

the results. In such a situation, the ancestral origins of

the families are well known and consistent across families.

The program Mendel produces a summary file that gives

the admixture proportions and their standard errors for

each person, pedigree-averaged admixture proportions, as

well as a new pedigree file that can be used as an input

file in further analyses. Table 1 is an excerpt of the sum-

mary file. Individuals 53 and 56 are the parents of individ-

uals 54 and 55. Although the genotypes for the siblings 54

and 55 differ at two markers (data not shown), their esti-

mated admixture proportions are identical (Table 1). No

genotype data are available for either founder 53 or 56,

and all of their offspring are in common. We know that

one of these two founders has predominantly Spanish an-

cestry and the other has predominantly Amerindian ances-

try, but we do not know which is which. Therefore, their

estimated admixture proportions can be swapped.

Figure 1 displays the distribution of the Amerindian pro-

portions for the 33 founders and the 27 sibships. For the

founders, the mean proportion of Amerindian ancestry is

0.553, the median is 0.598, the range is from 0.064 to

0.953, and the average standard error (SE) is 0.262. The

mean and median proportions of 0.576 and 0.538 of

Amerindian ancestry for the nonfounders are similar to

the corresponding values for the founders. However, non-

founder proportions show much smaller range, from 0.286

Table 1. An Excerpt of the Summary Output from
the Program Mendel

Admixture Coefficients Pedigree by Pedigree

PEDIGREE

NAME

PERSON

NAME

POPULATION

NAME

ESTIMATED

PROPORTION

STD ERROR

OF ESTIMATE

3 53 AM_IND 0.9255 0.2077

3 53 SPANISH 0.0745 0.2077

3 56 AM_IND 0.0638 0.2744

3 56 SPANISH 0.9362 0.2744

3 55 AM_IND 0.4946 0.1462

3 55 SPANISH 0.5054 0.1462

3 54 AM_IND 0.4946 0.1462

3 54 SPANISH 0.5054 0.1462

3 AVERAGE AM_IND 0.6058

3 AVERAGE SPANISH 0.3942

Figure 1. Estimated Amerindian Proportions in Founders and
Sibships
The light-colored blocks represent the number of sibships with the
indicated Amerindian ancestry proportions, and the darker blocks
represent the number of founders with the indicated American
ancestry proportions.
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to 0.898, and tend to have smaller standard errors

(SE ¼ 0:146). The use of a Dirichlet prior with population

prior counts of 2.24 for Spanish ancestry and 1.76 for Am-

erindian ancestry decreases the mean Amerindian propor-

tion for founders to 0.501 and the mean for nonfounders

to 0.514. The SEs22 of the founder and nonfounder esti-

mates decline to 0.176 and 0.106. The range decreases to

span from 0.241 to 0.741 for founders and to span from

0.356 to 0.783 for nonfounders.

To examine the properties of our method, we simulate

data under a variety of scenarios. In all scenarios, we use

the pedigree structure shown in Figure 2 and create geno-

type data for 500 multigenerational pedigrees (each with

five founders and 12 offspring) by using the gene-dropping

option of Mendel.16 The structure of the pedigrees mimics

that of the Mexican pedigrees. We first examine the effects

of missing founder genotypes (columns 3–11, Table 2).

Then, by using pedigrees where grandparents F1–F3 are

untyped, we examine the impact of varying the number

of markers (columns 12–14, Table 2), the informativeness

of the markers (columns 3–14, Table 3), and allele-

frequency misspecification (columns 15–17, Table 3).

Our most informative simulation scenario involves

46 unlinked AIMs with allele frequencies of 0.9 and 0.1

in one population and 0.1 and 0.9 in the other. We choose

these allele frequencies according to the criteria of Mao

et al.23 These authors selected AIMs on the basis of

the standardized variance of the allele frequencies, SV ¼
ðf1a � f2aÞ2=4f ð1� f Þ, where fka is the a allele frequency

in population k and f ¼ ðf1a þ f2aÞ=2. Choosing the top

two most informative markers from chromosomes 3–22

and the top three from chromosomes 1 and 2, the average

SV for the Mao data is 0.62, consistent with the SV ¼ 0:64

for our simulated data. Our least informative choice of al-

lele frequencies of 0.75 and 0.25 for one population and

0.25 and 0.75 in the other leads to SV ¼ 0:25, which is

less than the average SV of the nine AIMs used in the

Mexican family example (SV ¼ 0:31).

We find that the precision of the ancestral proportions

for founders is highly dependent on whether they are gen-

otyped (columns 3–11, Table 2). Untyped grandparents

cause a small reduction in precision for the grandchildren’s

ancestral proportions even when their parents are fully

genotyped (see entries for C1–C12, columns 3–8, Table

2). When analyzed as part of a large pedigree, the number

of siblings has little effect on the precision even when all

founders are untyped (compare, for example, entries in

columns 9–12, Table 2, for C1–C4 to the entries for

C5–C6). As predicted by Equation 4, offspring generally

have smaller standard errors than founders. Not surpris-

ingly, the precision depends on the number of markers.

The average standard error (SE) and the absolute difference

from the actual values (d) decrease approximately 2-fold as

the number of AIMs increases from 9 to 46 (columns 12–14

versus columns 6–8, Table 2). Likewise, as the informative-

ness of the AIMs increases, these precision measures

improve (columns 3–14, Table 3).

We also examined the effects of the misspecification of

the AIM allele frequencies by varying the stated frequen-

cies by 5 0.10 from their true values (Table 3). Specifically,

we are interested in whether the misspecification of half of

Figure 2. Structure of the Simulated Pedigrees
The presented pedigree structure (with five founders and 12 off-
spring) was used in all simulations for the creation of genotype
data for 500 multigenerational pedigrees.
Table 2. Effects of Missing Genotypes and Number of Markers on Estimated Ancestry

No Missing Genotypes, Sa ¼ 46 F1–F3 Untyped, S ¼ 46 F1–F5 Untyped, S ¼ 46 F1–F3 Untyped, S ¼ 9

Pedigree Member pi1
b bpi1 SEc dd bpi1 SE d bpi1 SE d bpi1 SE d

F1 0.750 0.749 0.063 0.050 0.744 0.092 0.074 0.744 0.092 0.074 0.739 0.159 0.145

F2 0.500 0.493 0.065 0.052 0.499 0.090 0.072 0.499 0.090 0.072 0.501 0.168 0.153

F3 0.250 0.256 0.060 0.048 0.249 0.095 0.081 0.249 0.095 0.081 0.256 0.176 0.154

F4 0.500 0.506 0.065 0.051 0.494 0.065 0.051 0.490 0.088 0.070 0.504 0.137 0.104

F5 0.500 0.504 0.065 0.051 0.504 0.066 0.052 0.506 0.074 0.063 0.510 0.104 0.119

C1–C4 0.625 0.621 0.044 0.036 0.621 0.047 0.039 0.621 0.047 0.039 0.619 0.101 0.085

C5–C6 0.375 0.375 0.044 0.034 0.374 0.052 0.043 0.374 0.052 0.043 0.378 0.111 0.095

C7–C8 0.562 0.559 0.031 0.031 0.558 0.040 0.032 0.556 0.041 0.039 0.562 0.088 0.068

C9–C12 0.438 0.439 0.039 0.031 0.439 0.042 0.034 0.439 0.045 0.039 0.444 0.091 0.075

a S denotes the number of unlinked markers.
b pi1 denotes the true proportion of population 1 ancestry, and bpi1 denotes the estimated proportion of population 1 ancestry.
c SE denotes the average standard error.
d d denotes the average absolute difference between calculated and actual ancestral proportions.
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Table 3. Estimated Ancestry as a Function of the Marker Informativeness and Allele-Frequency Misspecification

Pedigree

Member

f1a ¼ 0.9, f2a ¼ 0.1,a

No Misspecb
f1a ¼ 0.83, f2a ¼ 0.17,

No Misspec

f1a ¼ 0.8, f2a ¼ 0.2,

No Misspec

f1a ¼ 0.75, f2a ¼ 0.25,

No Misspec

f1a ¼ 0.8, f2a ¼ 0.2,

0.1 Misspec

pi1
c bpi1 SEd de bpi1 SE d bpi1 SE d bpi1 SE d bpi1 SE d

F1 0.750 0.744 0.092 0.074 0.750 0.093 0.078 0.734 0.122 0.101 0.746 0.149 0.122 0.712 0.110 0.095

F2 0.500 0.499 0.090 0.072 0.501 0.093 0.076 0.511 0.126 0.101 0.497 0.148 0.119 0.506 0.110 0.092

F3 0.250 0.249 0.095 0.081 0.253 0.104 0.084 0.248 0.132 0.108 0.268 0.164 0.132 0.280 0.122 0.099

F4 0.500 0.494 0.065 0.051 0.503 0.070 0.054 0.501 0.086 0.069 0.502 0.102 0.082 0.499 0.082 0.065

F5 0.500 0.504 0.066 0.052 0.500 0.070 0.052 0.500 0.086 0.072 0.507 0.103 0.083 0.500 0.082 0.069

C1–C4 0.625 0.621 0.047 0.039 0.626 0.050 0.040 0.622 0.064 0.052 0.621 0.078 0.065 0.609 0.060 0.051

C5–C6 0.375 0.374 0.052 0.043 0.378 0.057 0.044 0.378 0.070 0.058 0.383 0.085 0.068 0.393 0.066 0.055

C7–C8 0.562 0.558 0.040 0.032 0.564 0.043 0.034 0.562 0.054 0.043 0.562 0.064 0.054 0.554 0.051 0.042

C9–C12 0.438 0.439 0.042 0.034 0.439 0.045 0.036 0.440 0.054 0.047 0.445 0.066 0.052 0.447 0.053 0.045

a f1a denotes the a allele frequency in population 1, and f2a denotes the a allele frequency in population 2.
b Misspec signifies the degree of allele-frequency mispecification where 0.1 denotes that the major alleles are mispecified by 0.1 from their true values.
c pi1 denotes the true proportion of population 1 ancestry, and bpi1 denotes the estimated proportion of population 1 ancestry.
d SE denotes the average standard error.
e d denotes the average absolute difference between calculated and actual ancestral proportions.
the marker frequencies as f1a¼ 0.90, f2a¼ 0.10 and the mis-

specification of the other half as f1a¼ 0.70, f2a¼ 0.30, when

the true marker frequencies in the two populations are

f1a ¼ 0.80, f2a ¼ 0.20 for all the markers, produces a bias as

measured as the difference between the mean and the ac-

tual ancestral proportion. The ancestral proportions show

a meaningful degree of bias with this much misspecifica-

tion. The bias is slight when the misspecification is 5

0.05 of the true marker frequencies (data not shown).

As further validation of Mendel, we compare our results to

those obtained with Structure.24,25 We simulate data at 46

unlinked AIMs for 20 unrelated individuals from one popu-

lation (allele frequencies at each marker f1a ¼ 0.1 and f1b ¼
0.9), 20 related individuals from another population (allele

frequencies at each marker f2a ¼ 0.9 and f2b ¼ 0.1), and five

unrelated, admixed individuals. In the implementation of

Structure, the 40 individuals of known ancestry are used

for the estimation of allele frequencies, but their ancestries

are not estimated. The Structure and Mendel proportions

are quite close even when the original allele frequencies are

used in Mendel. The average absolute difference between
the StructureandMendel estimates is0.017,andthe absolute

differences range from 0.010 to 0.029. The estimates are, in

general, even closer when the Structure-derived frequencies

are used in Mendel. In this case, the average absolute differ-

ence between the Structure and Mendel estimates is 0.012,

and the absolute differences range from 0.002 to 0.023.

Because our method can use AIMs in linkage equilibrium

(LE) when individuals are unrelated, it is of interest to de-

termine the effect of ignoring family structure. We com-

pare the bias, SE, and d under two methods of estimation

and three scenarios. In each scenario, grandparents are un-

typed. Method R kept the family intact; method U treats

the offspring as unrelated. The three scenarios are (1)

offspring genotyped at 46 unlinked AIMs with SV ¼ 0:64

(columns 3–8, Table 4), (2) offspring genotyped at 200

markers in LE with SV ¼ 0:64 (columns 9–11, Table 4),

and (3) offspring genotyped at 200 AIMs in LE with

SV ¼ 0:55 (columns 12–14, Table 4). Scenario 2 is included

so that the reader can judge the effects of more AIMs with

the same informativeness as the unlinked AIMs. Unfortu-

nately, this comparison is not completely realistic because
Table 4. Treating Data as Pedigrees versus Unrelated Individuals

Pedigree

Member

Ra, Sb ¼ 46, SVc ¼ 0.64 U, S ¼ 46, SVc ¼ 0.64 U, S ¼ 200, SVc ¼ 0.64 U, S ¼ 200, SVc ¼ 0.55

pi1
d bpi1 SEe df bpi1 SE d bpi1 SE d bpi1 SE d

C1–C4 0.625 0.621 0.047 0.039 0.620–0.623 0.064 0.049–0.051 0.623–0.628 0.030 0.042–0.044 0.625–0.627 0.033 0.042–0.044

C5–C6 0.375 0.374 0.052 0.043 0.372–0.376 0.063 0.050–0.053 0.373–0.374 0.030 0.041–0.044 0.376–0.378 0.033 0.045–0.046

C7–C8 0.562 0.558 0.040 0.032 0.553–0.556 0.064–0.065 0.052–0.054 0.561–0.566 0.031 0.044–0.045 0.562–0.563 0.035 0.046

C9–C12 0.438 0.439 0.042 0.034 0.438–0.442 0.064 0.051–0.054 0.437–0.438 0.031 0.043–0.044 0.437–0.442 0.034 0.047

a R stands for ‘‘related’’ and signifies that the pedigree is analyzed intact; U stands for ‘‘unrelated’’ and signifies that the offspring are treated as though they

are unrelated.
b S denotes the number of unlinked markers.
c SV denotes the standardized variance.
d pi1 denotes the true proportion of population 1 ancestry, and bpi1 denotes the estimated proportion of population 1 ancestry.
e SE denotes the average standard error.
f d denotes the average absolute difference between calculated and actual ancestral proportions.
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Table 5. Misspecifying K ¼ 2 as K ¼ 3

Pedigree Member pi1
a,pi2 bpi1 SEb dc bpi2 SE d bpi3 SE d

F1 0.750,0.250 0.706 0.120 0.086 0.240 0.099 0.085 0.054 0.076 0.054

F2 0.500,0.500 0.478 0.096 0.071 0.488 0.097 0.072 0.034 0.053 0.034

F3 0.250,0.750 0.194 0.104 0.099 0.719 0.119 0.110 0.087 0.097 0.087

F4 0.500,0.500 0.484 0.074 0.060 0.476 0.074 0.059 0.040 0.045 0.040

F5 0.500,0.500 0.471 0.079 0.067 0.464 0.079 0.065 0.065 0.068 0.065

C1–C4 0.625,0.375 0.592 0.058 0.052 0.364 0.056 0.049 0.044 0.053 0.044

C5–C6 0.375,0.625 0.336 0.062 0.058 0.604 0.065 0.054 0.060 0.063 0.060

C7–C8 0.562,0.438 0.538 0.047 0.042 0.420 0.047 0.039 0.042 0.043 0.042

C9–C12 0.438,0.562 0.404 0.058 0.050 0.534 0.078 0.064 0.062 0.091 0.075

K denotes the number of populations.
a pij denotes the true proportion of population j ancestry, and bpij denotes the estimated proportion of population j ancestry.
b SE denotes the average standard error.
c d denotes the average absolute difference between calculated and actual ancestral proportions.
200 AIMs in LE with SV ¼ 0:64 are currently unavailable

for distinguishing between Amerindians and Europeans.

By using the supplemental data from Mao et al.,23 we cal-

culate that the top 200 AIMs have SV ¼ 0:55, as suggested

by scenario 3. When the same unlinked markers are used

(scenario 1), method R has greater precision than method

U; both show little bias. Detailed inspection of Table 4 sug-

gests that method R under scenario 1 is roughly equivalent

to method U under both scenarios 2 and 3.

We next examine the effects of the misspecification of

the number of ancestral populations. Misspecification of

K can occur in two ways. The number of populations can

be overestimated, or it can be underestimated. To investi-

gate the effects of assuming too many populations, we

reanalyze the scenario 1 data assuming K ¼ 3 (Table 5).

We assume that for 23 of these AIMs, population 3’s allele

frequencies are the same as population 1’s allele frequen-

cies, and that for the other 23 AIMs, population 3’s allele

frequencies are the same as population 2’s allele frequen-

cies. The ancestral proportions estimated for population

3 average less than 10% for all family members. Hence,

the effect of over-assigning the number of ancestral popu-
lations, in this case, is that a small fraction of an individ-

ual’s ancestry is incorrectly attributed to a third popula-

tion. Because the standard errors are of the same

magnitude as the estimated population 3 proportions,

most users would be wary of the population 3 assignment.

To determine the effects of under specifying K, we gener-

ate data for 45 unlinked AIMs where 15 markers separate

populations 1 and 2 from population 3, 15 markers separate

populations 1 and 3 from population 2, and 15 markers sep-

arate populations 2 and 3 from population 1. For each set of

15 markers, two of three populations have the same AIM fre-

quencies of 0.1 for one allele and 0.9 for the other, and these

frequencies are reversed in third population. We first ana-

lyze the data generated with 3 populations assuming K ¼ 3

(columns 3–11, Table 6). Our method R estimates are accu-

rate, but precision has decreased because of the reduction in

AIMs that distinguish between each of the populations.

There is still sufficient data to differentiate the ancestral pro-

portions for individuals with relativity small degrees of pop-

ulation 3 ancestry (see individuals C1–C12, column 9, Table

6) from the ancestral proportions for individuals with no

population 3 ancestry (see individuals F2, F4, and F5,
Table 6. Misspecifying K ¼ 3 as K ¼ 2

Ka ¼ 3 K ¼ 2

Pedigree Member pi1
b,pi2,pi3 bpi1 SEc dd bpi2 SE d bpi3 SE d bpi1 SE bpi2 SE

F1 0.500,0.250,0.250 0.499 0.121 0.104 0.277 0.103 0.093 0.223 0.116 0.101 0.610 0.112 0.390 0.112

F2 0.500,0.500,0.000 0.480 0.118 0.093 0.470 0.112 0.087 0.050 0.050 0.050 0.502 0.109 0.498 0.109

F3 0.250,0.500,0.250 0.278 0.129 0.099 0.516 0.134 0.116 0.206 0.111 0.097 0.380 0.125 0.620 0.125

F4 0.500,0.500,0.000 0.487 0.084 0.062 0.487 0.084 0.062 0.026 0.035 0.026 0.500 0.080 0.500 0.080

F5 0.500,0.500,0.000 0.501 0.083 0.059 0.480 0.083 0.059 0.019 0.028 0.019 0.510 0.080 0.490 0.080

C1–C4 0.500,0.375,0.125 0.488 0.066 0.054 0.375 0.065 0.051 0.137 0.055 0.043 0.556 0.060 0.444 0.060

C5–C6 0.375,0.500,0.125 0.378 0.072 0.054 0.495 0.073 0.051 0.127 0.060 0.043 0.441 0.066 0.559 0.066

C7–C8 0.500,0.438,0.062 0.488 0.053 0.038 0.431 0.053 0.041 0.081 0.036 0.030 0.528 0.050 0.472 0.050

C9–C12 0.438,0.500,0.062 0.440 0.055 0.038 0.487 0.050 0.038 0.073 0.037 0.043 0.476 0.052 0.524 0.052

a K denotes the number of populations assumed in the estimation.
b pij denotes the true proportion of population j ancestry, and bpij denotes the estimated proportion of population j ancestry.
c SE denotes the average standard error.
d d denotes the average absolute difference between calculated and actual ancestral proportions.
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column 9, Table 6). However, based on our results, it might

be preferable in practice to use method U with additional

linked AIMs rather than method R with unlinked AIMs in

dealing with more than three ancestral populations. If we

misspecify the analysis by analyzing data generated from

three populations while assuming K¼2, we get what appear

to be reasonable estimates (columns 12–15, Table 6). This

result clearly demonstrates that it is important in using

Mendel’s ethnic admixture option to be confident about

the number and nature of the ancestral populations.

The controversies generated by genetic-association studies

stem from the failure of researchers to adjust for ethnic admix-

ture.26 Makingsuch adjustmenteasywill encouragebetter sta-

tisticalanalysis.Mostmethodsthatestimateethnicadmixture

assume that genotyped individuals are not closely related,24

with a notable exception27 that uses self-reported ancestry.

Mendel adopts a reasonable likelihood model that takes ped-

igrees rather than random individuals as the unit of analysis.

As our simulation examples illustrate, this can reduce the pa-

rameter standard errors by as much as 1/3. Estimating founder

admixture proportions first and then propagating these to

nonfounders by repeated averaging minimizes the number

of primary parameters. The connection with kinship coeffi-

cients is both natural and esthetically pleasing. Prior evidence

onasociety’sethnicbackgroundcanbeexploitedbythe intro-

duction of Dirichlet priors. This is a good idea when genotyp-

ing data are sparse. One caution that should be kept in mind is

that the standard errors both for the founders’ proportions

and for the offspring proportions do not incorporate the

uncertainty due to allele-frequency estimation.

The limitations of likelihood-based estimation should be

respected. The foremost limitations are that the number

and nature of the ancestral populations must be known

and that markers that discriminate among them must be em-

ployed. Misspecification of the number of ancestral popula-

tions can profoundly impact study conclusions. In our sim-

ulations, the over-specification of K is less of a problem than

is the under-specification of K, but either error can cause con-

fusion. In contrast, minor misspecification of the allele fre-

quencies does not drastically affect the results. In estimating

the ethnic admixture of Mestizo families from Mexico City,

we used averaged Amerindian allele frequencies that span

a number of possible Amerindian ancestries. The AIMs we

used in this study differ much more between the Spanish

and Amerindians thanwithin Amerindian groups. If suitable

reference frequencies had been unavailable, we could have

collected an additional sample of unrelated Mestizo individ-

uals and used a program like Structure24,25 to estimate the

number of ancestral groups and the ancestral allele frequen-

cies. Regardless of how ancestral allele frequencies are

derived, these can be readily fed into Mendel.

The other important limitation is the assumption of un-

linked markers. Relaxing this assumption with pedigree

data entails a sharp increase in computational complexity.

For isolated individuals, the less demanding assumption

of linkage equilibrium can be substituted. In our simula-

tions, the use of 200 linked AIMs in LE and treatment of
754 The American Journal of Human Genetics 82, 748–755, March
family members as unrelated gave roughly equivalent re-

sults to the use of 46 unlinked AIMs and pedigrees. Even

with unlinked AIMs, the computational speed can be too

slow for very large pedigrees with marriage loops. Mendel

flags pedigrees that are too complex for analysis. These ped-

igrees can often be broken up into subpedigrees without too

much loss of information. A more satisfying solution might

be to replace the exact pedigree-likelihood calculations

with Markov chain Monte Carlo (MCMC) approximations.

There are several features of using pedigrees in Mendel’s

implementation that deserve comment. First, the ances-

tries of individuals’ parents can not be inferred if the indi-

viduals are treated as unrelated. For example, suppose indi-

vidual c with parents [ and m has ancestral proportions

pc1 ¼ 0.5 and pc2 ¼ 0.5. When c’s is treated as an unrelated

individual, the most we know about her parents’ ancestries

is that p[1 ¼ t and pm1 ¼ 1 � t where 0 % t % 1. That is, an

infinite number of combinations of parental ancestries are

possible. Second, because Mendel can handle noncodomi-

nant markers,8,12 tightly linked SNPs in linkage disequilib-

rium can be used with pedigrees. Mendel’s SNP combining

utility makes this easy. Thus, if several moderately good

AIMs are tightly linked, they can be combined to produce

an even more informative AIM.

The program Mendel is straightforward to use and pro-

duces high-quality estimates of ethnic admixture. Not only

are admixture proportions immediately usable in variance

components models for association, they are also applicable

in penetrance estimation with generalized linear models. It

is worth pointing out that a new analysis option of Mendel

makes generalized linear models a fruitful avenue of statisti-

cal analysis with pedigree data. By itself, inclusion of ethnic

admixture will not revolutionize statistical genetics. Seen as

another tool in the increasingly sophisticated toolkit of

statistical geneticists, it will have an important impact.

Appendix A

Our computer program Mendel maximizes the log likeli-

hood by recursive quadratic programming with quasi-New-

ton updates to the observed information�d2 ln L(p) subject

to the constraint
P

k pjk ¼ 1 for each founder j.12,14 At each

iteration, the current approximation to �d2 ln L(p) is im-

proved by a rank-one perturbation. Soft prior information

on ethnic admixture can incorporated by multiplication

of the likelihood (1) by a separate Dirichlet prior for each

founder. These independent and identically distributed

priors steer maximum a posteriori estimates toward reason-

able values when typing is sparse. The prior is multiplied by

the likelihood to create the joint likelihood,

LjointfLðpÞ
Y

j

Y
k

pvkþ1�1
jk , (5)

where the pseudocount vk supports ancestry k. In maxi-

mum a posteriori estimation, the joint likelihood (5) is max-

imized in the same manner as the original log likelihood.
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The URLs for data presented herein are as follows:

dbSNP, http://www.ncbi.nih.gov/SNP/
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